Synergetic motor control paradigm for optimizing energy efficiency of multijoint reaching via tacit learning

نویسندگان

  • Mitsuhiro Hayashibe
  • Shingo Shimoda
چکیده

A human motor system can improve its behavior toward optimal movement. The skeletal system has more degrees of freedom than the task dimensions, which incurs an ill-posed problem. The multijoint system involves complex interaction torques between joints. To produce optimal motion in terms of energy consumption, the so-called cost function based optimization has been commonly used in previous works.Even if it is a fact that an optimal motor pattern is employed phenomenologically, there is no evidence that shows the existence of a physiological process that is similar to such a mathematical optimization in our central nervous system.In this study, we aim to find a more primitive computational mechanism with a modular configuration to realize adaptability and optimality without prior knowledge of system dynamics.We propose a novel motor control paradigm based on tacit learning with task space feedback. The motor command accumulation during repetitive environmental interactions, play a major role in the learning process. It is applied to a vertical cyclic reaching which involves complex interaction torques.We evaluated whether the proposed paradigm can learn how to optimize solutions with a 3-joint, planar biomechanical model. The results demonstrate that the proposed method was valid for acquiring motor synergy and resulted in energy efficient solutions for different load conditions. The case in feedback control is largely affected by the interaction torques. In contrast, the trajectory is corrected over time with tacit learning toward optimal solutions.Energy efficient solutions were obtained by the emergence of motor synergy. During learning, the contribution from feedforward controller is augmented and the one from the feedback controller is significantly minimized down to 12% for no load at hand, 16% for a 0.5 kg load condition.The proposed paradigm could provide an optimization process in redundant system with dynamic-model-free and cost-function-free approach.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Biologically Motivated Paradigm for Heuristic Motor Control in Multiple Contexts

A biologically motivated controller is presented and investigated in terms of motor control and motor learning, especially motor learning of different behaviors. The controller, based on several ideas presented in the literature, used multiple paired inverse and forward internal models to generate motor commands and estimate the current environment within which the controller operated. The cont...

متن کامل

Kinematics and kinetics of multijoint reaching in nonhuman primates.

The present study identifies the mechanics of planar reaching movements performed by monkeys (Macaca mulatta) wearing a robotic exoskeleton. This device maintained the limb in the horizontal plane such that hand motion was generated only by flexor and extensor motions at the shoulder and elbow. The study describes the kinematic and kinetic features of the shoulder, elbow, and hand during reachi...

متن کامل

Optimizing speed and angle control of stepping motor by using field oriented control

In the present study, field oriented control of step motor implementation has been analyzed sothat it can make a Sensorless control. Efficiency and Facilities of step motor is more than othertypes of electromotor. Therefore, the numbers of mechanisms and different types of turning canbe made into them. Also controlling these motors is easier than other available motors. Steppingmotor has been d...

متن کامل

Feedforward impedance control efficiently reduce motor variability.

Despite the existence of neural noise, which leads variability in motor commands, the central nervous system can effectively reduce movement variance at the end effector to meet task requirements. Although online correction based on feedback information is essential for reducing error, feedforward impedance control is another way to regulate motor variability. This Update Article reviews key st...

متن کامل

Role of the cerebellum in reaching movements in humans. II. A neural model of the intermediate cerebellum.

The cerebellum is essential for the control of multijoint movements; when the cerebellum is lesioned, the performance error is more than the summed errors produced by single joints. In the companion paper (Schweighofer et al., 1998), a functional anatomical model for visually guided arm movement was proposed. The model comprised a basic feedforward/feedback controller with realistic transmissio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2014